
J .  FIuid Mech. (1978), vol. 87, part 1,  pp. 193-206 

Printed in Great Britain 

193 

On the response of a poro-elastic bed to water waves 

By TOKUO YAMAMOTO, 
Department of Civil Engineering, Oregon State University, Corvallist 

H. L. KONING, HANS SELLMEIJER 
Delft Soil Mechanics Laboratory, Delft, The Netherlands 

A N D  EP VAN HIJUM 
DeVoorst Hydraulics Laboratory, Emmeloord, The Netherlands 

(Received 18 July 1977) 

The problem of the response of a porous elastic bed to water waves is treated analytic- 
ally on the basis of the three-dimensional consolidation theory of Biot (1941). Exact 
solutions for the pore-water pressure and the displacements of the porous medium are 
obtained in closed form for the case of waves propagating over the poro-elastic bed. 
The theoretical results indicate that the bed response to waves is strongly dependent 
on the permeability k and the stiffness ratio G/K',  where G is the shear modulus of 
the porous medium and h" is the apparent bulk modulus of elasticity of the pore fluid. 
The earlier solutions for pore-water pressure by various authors are given as the 
limiting cases of the present solution. For the limits 0IKI-t 0 or k- t co ,  the present 
solution for pressure approaches the solution of the Laplace equation by Putnam 
(1949). For the limit G/K'+co, the present solution approaches the solution of the 
heat conduction equation by Nakamura et al. (1973) and Moshagen & Tmum (1975). 

The theoretical results are compared with wave tank experimental data on pore- 
water pressure in coarse and fine sand beds which contain small amounts of air. 
Good agreement between theory and experiment is obtained. 

1. Introduction 
When water waves propagate over a porous bed such as a sand bed, fluid flow is 

induced in the porous medium and the porous medium itself is forced to deform. 
Thus the bed response to water waves is actually a combination of fluid and solid 
mechanical effects. 

There have been numerous investigations of the problem of the flow induced in a 
porous bed by water waves, including Liu (1973), Massel (1976)) Moshagen & Torum 
(1975), Nakamura et al. (1973), Putnam (1949)) Reid & Krtjiura (1957), and Sleath 
(1970). However, they all assumed that the porous beds were rigid and non-deformable. 
In  addition, all except Moshagen & Tmum (1 975) and Nakamura et al. (1 973) assumed 
that the pore fluid was incompressible. The fluid motion in the porous bed is usually 
expressed by Darcy's law which, with the assumption of a rigid bed with isotropic 
permeability and incompressible water, leads to the Laplace equation for the pore- 
water pressure. The consequence of this theory is that the pore-water pressure response 
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is independent of the permeability of the bed material. Recently, a theory has been 
advanced by Massel (1976) to take into account nonlinear damping and the inertia 
term in the momentum equation in place of Darcy's law for rigid, porous beds. How- 
ever, the conclusion from the theory was that the influence of the permeability on the 
pressure distribution in both sea and seabed is negligibly small and that the result is 
essentially the same as that from the Laplace equation. 

The second approach taken by Nakamura et al. (1973) and Moshagen & Terrum 
(1975) is based on the assumption that the water is compressible while the porous 
bed is non-deformable, which leads to the heat conduction equation for the pore-water 
pressure. The conclusion from this assumption was that the pore-water pressure 
response is strongly dependent on the permeability of the bed material. The pressure 
attenuated rapidly and had a phase lag in fine soils. Nakamura et al. (1973) compared 
the theoretical results with the laboratory experiments on the pore pressure response 
in a fine sand bed and in a coarse sand bed. The experimental data showed unexplain- 
able pressure discontinuities near the bed surface. Since the waves generated in their 
experiments were steep, the stress state in the sand beds under the wave crest and 
trough might have reached the limit equilibrium or the state of liquefaction, causing 
the large pressure drops (see Yamamoto 1977). The experimental results for the 
coarse sand showed no phase lag and agreed reasonably well with the solution from 
the Laplace equation. The data for the fine sand showed a large pressure attenuation 
and a large phase delay. Their calculations showed fairly good agreement with their 
experiments in both magnitude and phase lag. However, a critical error was found in 
their calculations. The compressibility of water used in the calculation was 980 times 
that of real water. It will be shown from the present theory that the false agreement 
reported may be explained by a small amount of air probably existing in the sand used. 

On the other hand, the assumption common to the investigations concerned with 
the bed deformation from water waves such as Prevost et al. (1 975) and Mallaid & 
Dalrymple (1977) is that the bed is an elastic continuum and no fluid flow takes place 
in the bed. This is a classical solid mechanical problem and the solution can be found 
in the text books on elasticity. Assuming that the pore-water pressure is equal to the 
change in the octahedral normal stresses in the elastic continuum, Prevost et al. 
(1975) concluded that the pore-water pressure is the same as the one obtained from 
the Laplace equation and, therefore, is independent of the permeability of the soil. 
This approach is, however, not physically consistent. 

Pore-water flow, volume change, and deformation occur simultaneously in real soil 
beds. In  order to take into account all of the effects, the analysis must be based on 
a more sophisticated mathematical model for the behaviour of the fluid/porous- 
medium complex. Biot (1941) presented a theory which takes into account the 
elastic deformation of the porous medium, the compressibility of pore fluid, and the 
Darcian flow of pore fluid. The purpose of this paper is to examine the bed response to 
water waves as a combination of the fluid and solid mechanical effects based on the Biot 
theory. The formulation of the equations presented in this paper is based on the 
original work by Koning (1968). It will be shown that all the earlier solutions for the 
pore-water pressure response obtained by Putnam (1949), Nakamura et al. (1973), 
and Prevost et al. (1975) are indeed the three extreme cases of the more general 
solution presented in this paper. The theoretical results will be compared with the 
pore-water pressure response in sand beds measured in laboratory experiments. 
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2. Governing equations 
The proposed model is based on the physically consistent, three-dimensional 

consolidation theory deveIoped by Biot (1 941 ). Since a complete and clear-cut deriva- 
tion of the theory is given in the original paper, as well as in many text books (e.g. 
Verruijt 1969), it will not be repeated here. The basic assumption is that the soil 
skeleton obeys Hooke's law, i.e. that the soil has linear, reversible, isotropic, non- 
retarded mechanical properties. Since we are interested in the relatively small 
oscillatory deformation relative to the hydrostatic equilibrium state, such an idealized 
assumption may be reasonable. The movement of the pore fluid is assumed to obey 
Darcy's law. 

The problem considered in this paper is two-dimensional. An infinitely deep, 
homogeneous isotropic sediment is considered. The x axis is taken on the bed surface 
and the positive direction of the z axis is taken vertically downward from the bed 
surface. The waves travel from right to left. 

Since the hydrostatic components of the pore-water pressure, stresses, and strains 
in the soil are trivial to the following consideration of the problem, only the incre- 
mental components of such variables will be considered unless otherwise mentioned. 

The continuity equation is given by 

k n ap a€ -02p = --+- 
Y K at at , 

in which p is the excess pore-water pressure, e is the volume strain of the porous 
medium, t is the time, k is the coefficient of permeability of the soil, y is the unit 
weight of the pore-water, n is the porosity, and K' is the apparent bulk modulus of 
pore-water. 

If the pore-water is absolutely air-free, K' is equal to the true bulk modulus of 
elasticity of water K .  However, if the pore-water contains even a very small amount 
of air, the apparent bulk modulus of elasticity of the water decreases drastically and 
K' is related to K by (Verruijt 1969) 

where S, is the degree of saturation and Po is the absolute pore-water pressure. The 
volume strain for the two-dimensional problem is 

where u is the x component of soil displacement and w is the z component of soil 
displacement. 

From the effective stress concept and Hooke's law, the equations of equilibrium are 
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where Y is Poisson's ratio for the soil, G is the shear modulus of the soil, and G is 
related to Young's modulus E and v by 

The effective stresses are related to the strains by Hooke's law as 

~ k = 2 G  [a, -+- " e l  
ax 1-2v ' 

where gL is the effective normal stress in the x direction, s: is the effective normal 
stress in the z direction, and 7, is the shear stress in the x direction on the plane 
perpendicular to the x axis. 

Equations (2 . i ) ,  (2.4) and (2.5) form a system of three partial differential equations 
in terms of the three unknown variables, p ,  u and w, to be solved for particular 
boundary conditions. 

3. Boundary-value problem 
In  this section, the three simultaneous partial differential equations will be solved 

for the case of waves propagating over a porous bed. At the top of the bed ( z  = 0) 
the pressure fluctuates owing to surface waves. The pressure fluctuation attenuates 
as the waves travel over the bed owing to the energy loss in the bed. However, the 
attenuation rate is usually small and may be neglected when only the region around 
a structure is considered. Thus the pressure at  the bed surface is assumed to be 
periodic in this development. Its value may be determined by experiment or, ignoring 
the damping, by higher-order wave theories. In any event, the periodic signal can be 
expanded in a Fourier series and it is, therefore, sufficient to study a sinusoidal 
fluctuation. 

3.1. Boundary conditions 

In  order to solve the three simultaneous partial differential equations, one needs three 
independent conditions per boundary. At the bed surface, the boundary conditions are 
that the vertical effective stress is zero, that the shear stress is negligibly small, and 
that the sinusoidal pressure fluctuation exists, or a t  z = 0: 

~ ; = 2 6  -+- -+- = 0 ,  [2 1:zy(2 2)] ( 3 . 1 ~ )  

(3.1 b )  

p = po  exp [i(hx + w t ) ] ,  ( 3 . 1 ~ )  



Response of a poro-elastic bed to water waves 197 

where p, is the amplitude of pressure fluctuation at  the bed surface, h is the wave- 
number, and w is the angular wave frequency, and only the real part is considered in 
the last equation. 

The boundary conditions for a semi-infinite half-plane may be given as 

u,w,p-+O as z+m. (3.2) 

3.2. Harmonic solutions 
Since the boundary condition (3.1) is periodic in both time and space, it is reasonable 
to assume that u, w andp are also periodic in time and space, or 

u = V(z)  exp [i(hx + wt) ] ,  

w = W(z)  exp [i(hx + wt) ] ,  

( 3 . 3 ~ )  

(3.3b) 

p = P(z)  exp [i(Ax + wt) ] ,  (3.3c) 

in which only the real parts are considered, as before, and U ,  W and P are functions 
of z only. 

Substitution of (3.3u., b,  c )  into the three governing partial differential equations 
(2.1)) (2.4) and (2.5) leads to three simultaneous ordinary differential equations of 
second order. The differential equations are linear and homogeneous and the solutions 
can be found by forming the characteristic equation of the operator, D = d/dz.  One 
will find the characteristic equation as 

where 

The characteristic equation has two equal roots + A ,  two equal roots - A, and two 
simple roots & A’. Hence the general solutions are 

U = a, exp (hz) + a2 exp ( - hz) + a3 z exp (Ax)  + a4z exp ( - hz )  

W = b,exp (hz) + b,exp ( - Az) + b,zexp (hz )  + b4zexp ( - Az)  

P = c,exp (hz) +c2exp ( - hz) +c3zexp (hz) +c,zexp ( - A x )  

+ a5 exp (A’z) + a6 exp ( - h’z), 

+ b, exp (h’z) + b6 exp ( - h’z), 

+ c5 exp (A‘z) + c6 exp ( - A’z), 

(3.6a) 

(3.6b) 

( 3 . 6 ~ )  

where a,, b, and c, (n = 1 ,  . . . , 6 )  are constants which have to be determined from the 
boundary conditions and the governing equations (2.1), (2.4) and (2.5). 

From the semi-infinite half-plane boundary conditions (3.2)) the constants a,, b, 
and c, (n = 1,3 ,5)  vanish and (3.6a, b , c )  become 

U = a2 exp ( - hz) +a4z  exp ( - hz) +a6exp ( - h’z), ( 3 . 7 ~ )  

W = b2 exp ( - hz) + b4z exp ( - hz) + b6exp ( - h‘z), 

P = c2 exp ( - hz) + c4z exp ( - hz) + c6 exp ( - h’z). 

(3.7b) 

(3.7c) 

The coefficients a,, b, and c, are not independent. The dependence can be determined 
by substitution of ( 3 . 7 ~ )  b,  c )  into (2.1), (2.4) and (2.5), i.e. b, and c ,  can be given 
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in terms of a,. By substitution of the constants b, and c ,  so determined into 
(3.7a, b,  c )  one obtains 

U = a,exp ( - A x )  + a4z exp ( - hz) + a,exp ( - h‘z), (3.8a) 

2a 
h 

a4 exp ( - hz) + 2 w’pG exp ( - h’z), P = 2 -  
l + m  

. 2G 

in which 
p =  ( l - v ) / ( 1 4 v ) ,  

( 3 . 8 ~ )  

(3.9) 

(3.10) 

0’ = W I G ,  (3.11) 

1 (3.12) 

The three constants a2, a4 and a6 can be determined from the boundary conditions 
(3.1 a ,  b,  c )  at the bed surface. Finally, we obtain the exact solutions for u, w andp as 

[ -h”+i(l+rn)w“ mh” 1 -[I + 2(1- v) h”] +i(l - 2 4  0’’ 
u = i  m exp(-hz)- 1 -  { -h”+i(l +m)w” 

(3.13a) m 
- h ” + i ( I  +m)w” 

x h z  exp ( - hz) + 

1 mA ” 
exp(-hz)- 1- 1 [ -h“+i(l +m)w” 

I + ( 1 - 2v) ( - A’’ + id’) 
W =  ( [ l + m  -h”+i ( i+m)w” 

x h z  exp ( - A x )  - m( 1 + A ” )  e ~ p ( - h ’ z ) ) ~ e x p [ i ( h z + w t ) ] ,  Po (3.136) 
-h”+i(l + m ) d  

where 
x p, exp [i(hx + wt )], (3.13 c )  

W” = P(w‘/h2), (3.14) 

A’’ = (h’-h)/h. (3.15) 

In order to appreciate the physical significance of the exact solutions (3.13a, b,  c )  
two special cases are considered in the following. 

3.3. Completely saturated soils ( G / K  -+ 0) 

If the soil is completely saturated with water and if the pore-water does not contain 
gases during the entire cycle, then the apparent modulus of elasticity, A?, is equal 
to the true modulus of elasticity of water, K = 4 x lo7 p.s.f. (1.9 x 109N/m2). Since 
the value of G for soils varies from about 10’p.s.f. (4.8 x 108N/m2) for very dense 
sand to 104p.s.f. (4.8 x 106N/m2) for silt and clay, the stiffness ratio, GIK‘, becomes 
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FIGURE 1. Vertical distribution of the amplitudes the pore-water pressure, the effective stresses, 
and the displacements for the limiting case G/K'+O.  -, Ipl/p,; -.-, 2hGlw(/po; ---, 
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practically zero for most soils except for dense sand. As G/K'+ 0, m+ 0, for the limit 
we obtain from (3.13) 

u = - ihz exp ( - hz) (p,/BhG) exp [i(hx + w t ) ] ,  

w = [exp ( - hz) + hz exp ( - hz)] (p,/ZhG) exp [i(hx + wt)], 

p = p ,  exp ( - hz) exp [i(hx + ot)]. 

( 3.16 a )  

(3.16 6 )  

( 3.16 c) 

It is interesting to note that the pore-water pressure response for this case is the 
same as that obtained by Putnam (I 949), who assumed that the soil is rigid and water 
is incompressible, and that obtained by Prevost et al. (1975), who assumed that the 
soil is an elastic continuum and no fluid flow takes place in the soil. The pressure 
attenuation for this case is small and independent of the permeability of soil. As can 
be seen from (3.1 6), however, such good transmission of the pressure has to be associated 
with the deformation of the soil. The amplitudes of the displacements and the pore- 
water pressure after non-dimensionalization are plotted in figure 1. A given soil 
particle moves on an elliptical orbit in general. Near the bed surface the motion is 
only vertical. For hz > 4.0, the orbit becomes essentially a circle. 

The effective stresses for this case can be obtained by substituting (3.16) into (2.7), 
(2.8) and (2.9), and they are given as 

vi = -vi = -2kZs =p,hzexp( -hz)exp[i(hx+wt)]. (3.17) 

Substituting (3.16) into (2.3), one finds that the volume strain, 6, is always zero 
for this case - no volume change. The maximum absolute values of the stresses given 
by (3.17) are also plotted in figure 1. All three effective stresses increase from zero 
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at the bed surface ( z  = 0 )  to the maximum value, 0 . 3 6 ~ ~  a t  hz = 1, and then gradually 
decrease as z is increased. 

If the permeability, k, of the soil is large, w“ becomes small and ( 3 . 1 3 ~ )  tends to 
( 3 . 1 6 ~ )  even for a slightly unsaturated case. This will be further discussed in the 
experiments section. 

3.4. Partially saturated dense sand and sandstone (G/K’-t CQ)  

Another interesting case is when the stiffness of the soil becomes much larger than that 
of pore-fluid, or G/K’+co. Physical examples will be sandstone and very dense 
sand [G = 10’p.s.f. (4.8 x 108N/m2)] saturated with a mixture of liquid and gas. If 
the sand is 95 yo saturated with water at  atmospheric pressure, the apparent modulus 
of elasticity is, from (2.2), K‘ = 2 x 104p.s.f. (9.5 x 105N/m2) or G / K  = 1250. 

For thelimit G/K-+cQ, (3.13) becomes 

(3.1 8 a )  

w = (  1 + (1  - 2 4  ( -h”+iw”)  
iw“ 

i 
w ] 2hG 

+7 (1 +At’) exp ( - h’z) 130 exp [i(hx + w t ) ] ,  (3.18b) 

p = exp ( - A’x)p0 exp [i(hz + wt)]. (3.18 c) 

The pressure equation ( 3 . 1 8 ~ )  is essentially the same as that obtained by Nakamura 
et aZ. (1 973) and Moshagen & Tmum ( 1  975), assuming a rigid soil and compressible fluid. 
Since Ih’l > h for this case, the pressure attenuates rapidly compared with ( 3 . 1 3 ~ )  
and there is a phase delay in the pore pressure response which increases linearly as z 
is increased. However, the attenuation of displacements and, thus of the stresses, is 
slow as can be seen from (3.18a, b ) .  

Depending on the stiffness and permeability of the bed material and the gas content 
in the pore-water, the transmission of pressure, stresses and deformation in the 
sediment falls somewhere in between the two extreme cases just considered and thus 
must be determined by the exact solution ( 3 . 1 3 ~ )  6 ,  c). 

The theoretical pressure equation ( 3 . 1 3 ~ )  will be compared with the experimental 
data obtained from laboratory tests in the next section. 

4. Experiments 
The pore pressure measurements were made for both coarse and fine sands at  the 

Delft Hydraulics Laboratory. The experimental set-up is shown in figure 2. The thick- 
ness of the sand bed, d,  was 50 cm and the water depth 90 cm. The wave period, T, was 
varied from 1 to 2.6 seconds. The coarse and fine sands were both fairly uniform and the 
average grain sizes were 1.2mm and 0.2mm, respectively. The pore pressures at  
various vertical distances from the bed surface were measured by five pore-water 
pressure transducers. In  order to avoid the sand drifting at the surface and the 
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FIGURE 2. Experimental set-up for the pore-water pressure measurements 
in the sand bed in the wave tank. The units are in metres. 

liquefaction of the sand bed by waves, the wave height and the wave steepness were 
kept small. 

5. Comparisons of theory and experiment 
The data for the coarse sand are plotted in figure 3. There was practically no phase 

shift in these data. The data agree very well with the theoretical values determined 
by the solution of the Laplace equation for finite depth given by Putnam (1949); 
this is because the permeability, k, of the soil is so large that w'' becomes small, rather 
than because the sand is completely saturated as discussed in the previous section. 
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FIGURE 3. Vertical distribution of the amplitude of the pore-water pressure in the coarse sand. 
-, present theory and the theory by Putnam (1949). Experimental data: , T = 1.0 s; A, 
1.5; +, 2.0; 0, 2.6. 

For this case, the pressure equation ( 3 . 1 3 ~ )  approaches to the solution by Putnam 
(1949). 

Typical simultaneous recordings of wave and pore pressures at  various depths for 
the fine sand are given in figure 4. As x increases, the pore pressure decreases and a 
phase delay appears. 

Since a direct determination of k, G, v and K’ was not made, direct comparisons 
between the theory and the experiments cannot be done. However, some indirect 
comparisons are made in the following. 

From the three series of data carried out for different wavelengths, the best fit, in 
the least-squares sense, to ( 3 . 1 3 ~ )  yielded the following values: v = 1/3, c = 0.02 m2/s 
and m = 1. 

The air content estimated from (2.2) was about 2 yo by volume. The direct measure- 
ments of air contents for a similar sand at similar experimental conditions revealed 
a value of 2 yo (Nath et al. 1977). This supports the credibility of the estimated values of 
v, c and m in some degree. 

The measured amplitudes of the excess pore-water pressure and the results of the 
calculations with ( 3 . 1 3 ~ )  are shown in figure 5 .  Generally, good agreement between 
the present theory and experimental data is shown. 

In  figure 6, the experimental data for T = 2 s  are compared with various theories. 
In  these calculations the determined value of c = 0.02m2/s is used. The value of d 
has hardly any influence on the results obtained from the heat conduction equation 
by Moshagen & Tarrum (1975) and Nakamura et al. (1973), whereas the results obtained 
from the Laplace equation by Putnam (1949) for d = 0.5 m differ from those for d --f CO. 

The theoretical values calculated by ( 3 . 1 3 ~ )  of the present theory lie between the 
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FIGURE 4. Example of recordings of the pore-water pressure 
and the waves for the fine sand ; T = 2.0 s. 

solutions of the Laplace equation and the heat conduction equation, but closer to 
those of the heat conduction equationfor this condition. Thus, theeffect of the bottom 
boundary is probably small. The comparisons of theories and experimental data 
for the phase delay are shown in figure 7. Generally, good agreement is obtained 
between the data and present theory. 

As demonstrated here, none of the previously proposed theories are adequate for 
predicting the pore-water pressure generation in the fine sand. The Laplacian solution 
by Putnam (1949) predicts too small a pressure attenuation in soils, and the solution 
of the heat conduction equation by Moshagen & T0mm (1975) and Nakamura et al. 
(1973) predicts too large a pressure attenuation. Furthermore, neither of these provides 
information on the stress and strain in soils. The present theory seems to agree very 
well with the laboratory experiments. The theory provides the information on the 
stress-strain state in soils. 

Further stress analysis based on the present theory indicates that the soils can be 
liquefied by passage of a steep wave (Yamamoto 1977). 
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FIQURE 5. Vertical distribution of the amplitude of the pore-water pressure in the fine sand. 
-, present theory. Experimental data: 0 ,  T = 1.0s; A, 1.5; + ,2.0; 0,245. 

FIGURE 6. Comparison between various theories and experiments for the amplitude of the pore- 
water pressure in the fine sand; T = 2.0s .  -, present theory (d = co); -*-, the theory by 
Moshagen & Terum (1975) (d = 0.5m, a); --- , the theory by Putnam (1949) (d = 06m). 
Experimental data are shown by + . 

6. Summary and conclusions 
We have obtained the exact closed-form solutions for the pore-water pressure, the 

displacements, and the effective stresses in the elastic porous bed induced by water 
waves. The bed response is influenced by the permeability, the stiffness of the porous 
medium, and the compressibility of the pore fluid. The earlier solutions for the pore- 
water pressure response by Putnam (1949), Nakamura et al. (1973), Moshagen & 
Trarum (1975) and Prevost et aE. (1975) are all given as extreme cases of the present 
solution. 

When the stiffness of the porous medium is much smaller than that of the pore 
fluid, such as for saturated soft soils, the bed response becomes independent of the 
permeability and has no phase lag. The pressure response approaches the solution 
by Putnam (1949) for a rigid bed and incompressible pore fluid and the solution 
by Prevost et al. (1975) for an elastic continuum without pore fluid flow. However, 
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FIGURE 7. Vertical distribution of the phase lag in the pore-water pressure response in the fine 
sand.-, presenttheory (d = a);-*- , the theory by Moshagen & Terum ( 1975) (d = 0.5 m, a). 
Experimental data: ., T = 1.08; A, 1-5; +, 2.0; @, 2.6. 

the good pressure transmission is associated with a good deformation of the porous 
medium. 

On the other hand, when the stiffness of the porous medium is much larger than that 
of the pore fluid, such as for partially saturated dense sands, the pressure response 
approaches the solutions by Nakamura et al. (1 973) and Moshagen & T~arum (1  975) 
for a rigid porous bed and compressible pore fluid as expected. The pressure attenuates 
rapidly and the phase lag increases linearly as the distance from the bed surface 
is increased. However, the stresses in the porous medium attenuate slowly for this 
case. 

Depending on the permeability, the stiffness of the porous medium, and the com- 
pressibility of the pore fluid, the bed response to water waves falls somewhere between 
the two extremes and, thus, the present solution should be used. 

The theoretical results have been compared with the results from laboratory ex- 
periments on the pore-water pressures in the coarse and fine sands. Good agreement 
between the present theory and the experiment has been obtained. 

REFERENCES 

BIOT, M. A. 1941 General theory of three-dimensional consolidation. J .  Appl .  Phys. 12,155-164. 
KONING, H. L. 1968 Rep. BeZ& Soil Mech. Lab. (c )  0-14683-11. 
LIU, P .  L. 1973 Damping of water waves over porous bed. Proc. A.S.C.E., J .  Hydraul. Div. 

MALLAID, W. W. & DALRYMPLE, R. A. 1977 Water waves propagating over a deformable 
99(HY12),  2263-2271. 

bottom. Offshore Tech. Conf. OTC 2895, Houston, Texas.  



206 

MASSEL, S. R. 1976 Gravity waves propagated over permeable bottom. Proc. A.S.C.E., 
J .  Waterways, Harbors & Coastal Engng 102(WW2), 11-121. 

MOSHAOEN, H. & T~RUM, A. 1975 Wave induced pressures in permeable seabeds. Proc. A.S.C.E., 
J .  Waterways, Harbours & Coastal Engng 101(WW1), 49-57. 

NAKAMURA, M. et al. 1973 On the seepage in the seabed due to waves. Proc. 20th Japan SOC. 
Civil Engrs Coastal Engng Conf. pp. 421-428 (in Japanese). 

NATH, J. H. et al. 1977 Pressures in sand from waves and caisson motion. Rep. Lab. Testing 
for Delft Hydraul. Lab. (See also Tech. Rep., School Engng, Oregon State Univ.) 

PREVOST, J. H. et al. 1975 Discussion of ‘Wave induced pressures in permeable seabeds’ 
(by H. Moshagen & A. Tsrum, paper no. 11099). Proc. A.S.C.E., J .  Waterways, Harbours 
& Coastal Engng lOl(WWl), 464-465. 

PUTNAM, J. A. 1949 Loss of wave energy due to percolation in a permeable sea bottom. Trans. 
Am. Geophys. Un. 30, 349-356. 

REID, R. 0. & KAJIURA, K. 1957 On the damping of gravity waves over a permeable seabed. 
Trans. Am. Geophys. Un. 30, 662-666. 

SLEATH, J. F. A. 1970 Wave induced pressures in beds of sand. Proc. A.S.C.E., J .  Hydraul. 

VERRUIJT, A. 1969 Elastic storage of aquifers. In  Flow Through Porous Media (ed. R. J. M. 
Dewiest), chap. 8. Academic Press. 

YAMAMOTO, T. 1977 Wave induced instability in seabeds. Proc. A.S.C.E. Spec. Conf. : Coastal 
Sedimnta 77, Charleston, SC. 

T .  Yamamoto, H .  L. Koning, H .  Xellmeijer and E.  van Hi jum 

Div. 96(HY2), 367-378. 


